首页> 外文OA文献 >Surface modification of colloidal semiconductor nanocrystal quantum dots
【2h】

Surface modification of colloidal semiconductor nanocrystal quantum dots

机译:胶体半导体纳米晶体量子点的表面修饰

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current quantum dot surface modification strategies rely heavily on ligand exchange that removes the nanocrystal\u27s native ligands originated from its synthesis. This can cause etching and introduce surface defects, affecting the nanocrystal\u27s optical properties. In addition, common ligand exchange method fails to control the degree of functionalization or the number of functional groups introduced per nanocrystal.We describe our work on surface modification of semiconductor nanocrystal quantum dots investigating a new approach that not only bypasses ligand exchange and introduces native active ligands with original optical properties, but also is able to control the degree of surface loading, called \u22valence\u22, in semiconductor nanocrystal quantum dots. We show that surface doped quantum dots capped with chemically-active native ligands can be prepared directly from a mixture of ligands with similar chain lengths. Initial ratio between chemically active and inactive ligands is retained on the nanocrystal surface, allowing to control the extent of surface modification.The extent of surface coverage by a particular functional group will have a large impact on a nanocrystal affinity and permeability to a variety of biological structures. It also affects nanocrystal\u27s ability to localize, penetrate, and transport across specific tissues, cellular and subcellular structures. We show that we are able to control the loading of cholestanone per quantum dot nanocrystal. We observed that samples with higher steroid loading infuse themselves more with the lipid membrane compare to those with no or little steroid.To further investigate the surface ligand packing, structure and reactivity, we apply advanced solution NMR techniques to determine surface ligand organization and chemistry. Two-dimension ROESY studies show that ligands with the same chain length tend to homogeneously distribute themselves onto the nanocrystal\u27s surface however ligands with the different chain length tend to form islands. Furthermore, we demonstrate that surface ligand organization can affect the reactivity of quantum dots. Formation of rafts as a result of packing ligands of a same length, increase the local concentration of reactive terminal group and facilitate the chemical reactivity at the surface of quantum dots.We also synthesize multifunctional multidentate polymeric ligand via ADMET. Varying the total dienes-to-Ru catalyst ratio allows us to control the extent of ADMET, which enables us to achieve an accurate control over polydentate ligand size. We use the synthetic polymer as a linkage for constructing gold-QD heterostructure.We hope that this study can provide a new avenue to understand the organic/inorganic boundary of other and more complex nanoparticle/ligand systems.
机译:当前的量子点表面修饰策略在很大程度上依赖于配体交换,该交换去除了源自其合成的纳米晶体的天然配体。这可能会导致蚀刻并引入表面缺陷,从而影响纳米晶体的光学性能。此外,普通的配体交换方法不能控制每个纳米晶体的官能化程度或引入的官能团数量。我们描述了我们在半导体纳米晶体量子点的表面修饰方面的工作,研究了一种不仅绕过配体交换并引入天然活性的新方法具有原始光学性质的配体,还能够控制半导体纳米晶体量子点中的表面负载度,称为“价”。我们表明,可以直接从具有相似链长的配体混合物制备表面掺杂有化学活性天然配体的量子点。化学活性和非活性配体之间的初始比率保留在纳米晶体表面上,从而可以控制表面修饰的程度。特定官能团的表面覆盖程度将对纳米晶体对各种生物的亲和力和渗透性产生重大影响结构。它还会影响纳米晶体在特定组织,细胞和亚细胞结构中定位,穿透和运输的能力。我们表明,我们能够控制每个量子点纳米晶体中胆甾酮的含量。与没有或很少有类固醇的样品相比,我们观察到类固醇载量较高的样品在脂质膜上的浸入更多。二维ROESY研究表明,具有相同链长的配体倾向于均匀地分布在纳米晶体的表面上,但是具有不同链长的配体倾向于形成岛。此外,我们证明表面配体组织可以影响量子点的反应性。通过堆积相同长度的配体形成筏,增加了反应性端基的局部浓度,并促进了量子点表面的化学反应性。我们还通过ADMET合成了多功能多齿聚合物配体。改变总二烯与钌催化剂的比例可以使我们控制ADMET的程度,从而使我们能够精确控制多齿配体的大小。我们将合成聚合物用作构建金QD异质结构的链接。我们希望这项研究可以为了解其他更复杂的纳米粒子/配体系统的有机/无机边界提供一条新途径。

著录项

  • 作者

    Tavasoli, Elham;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号